

Questions To Ask When Specifying A Switch
 3-5

PRODUCT MATRIX

Anti-vandal Switch Series Comparison 6-9
Pushbutton Switch Series Comparison 10-17
플 —— SubminiaturePushbuttons 10
- PCBMountPushbuttons.12-13
Panel Mount Pushbuttons 14-17
$\xrightarrow{40}$ Tactile Switch Series Comparison 18-23
Snap Action Switch Series Comparison 24-25
(3) Rocker Switch Series Comparison 26-31
曾 —— Subminiature Rockers 27
0 —— Rectangular Panel Mount Rockers 28-29
—— Oval / Round Panel Mount Rockers 30-31
\qquad
Slide Switch Series Comparison 34-35 -35
Toggle Switch Series Comparison 32-33
\longrightarrow
保 .
DIP Switch Series Comparison 36-37
Glossary / IP Rating Chart 38
Recommended Soldering Guidelines 39
E-SWITCH ${ }^{\circ}$ \qquad
\sin

E-Switch has prepared a 7-step process to help guide users to determine the type of switch best suited to their needs.

1

WHAT TYPE OF SWITCH ARE YOU LOOKING FOR?

The switch categories below show the different types to choose from.

WHAT ELECTRICAL RATINGS ARE NEEDED?

1. Is the product AC or DC ?

- Common Voltages for AC: 125VAC, 250VAC
- Common Voltages for DC: 3, 6, 12, 24 and 48VDC

2. How many amperes does the switch need to handle?

- Low Power is in the milliamps
- Medium Power is from 2 amps to 5 amps
- High Power is greater than 6 amps

3. If you're looking at medium to high power, what agency approvals are needed?

- Where the product is sold determines what approvals are needed.

(cULus)
North American Agency

(ENEC) European Agency

(VDE)
German Agency

(TUV) Worldwide Agency

HOW MANY POLES AND THROWS DO YOU NEED?

Poles are the number of closed independent circuits.
Throws are the number of positions in which a given pole is closed.
Common pole/throw configurations are:

Basic examples of above configurations are:
SPST - Flashlight: 1 pole for turning the light on or off.
SPDT - Vacuum Cleaner: 1 pole for power, 1 throw for low speed, 1 throw for high speed.
DPST - Air Conditioner: 1 pole controls the chiller, 1 pole controls the fan.
DPDT - Hair Dryer: 1 pole controls the heater, 1 pole controls the fan, 1 throw is for low speed, 1 throw is for high speed.

HOW DOES THE SWITCH ATTACH TO YOUR PRODUCT?

1. Panel Mount

- What is the panel cutout size?
- What is the thickness of the panel?
- What type of termination? " Quick connect or solder lug

2. PC Board Mount

- What type of termination?
» Through hole or surface mount
- What type of actuation?
" Right angle or vertical
- Do you need a process sealed component?

WHAT IS YOUR APPLICATION?

Knowing the application that the switch goes into aids us in the ability to look for unique instances where certain switches work better than others. Below are some examples of industries we sell our switches to.

6

ARE THERE ANY ADDITIONAL REQUIREMENTS?

Many products have requirements that are not initially thought of. Some might make the switch more aesthetically pleasing and others will help the switch perform better under special circumstances. Below are examples that should be brought up during discussion:

- Momentary or Latching
- Illumination
- Sealed Protection (IP Rating)
- Custom Cap Options
» Colors
» Graphics
" Styles

- Long Life Expectancy
- High Inrush or Horse Power Rating
- Extreme Temperature Rating
- Custom User Requirements

WHAT IS THE ESTIMATED ANNUAL USAGE (EAU)?

If you are looking for a custom switch, it is important to know an accurate EAU for your project. Once we know, we are able to determine how feasible certain customizations are. Since unique requirements sometimes incur additional tooling charges, knowing in the beginning will help expedite the process.

E-SWITCH ${ }^{\circ}$ \qquad

E-Switch offers a large selection of anti-vandal switches for the marketplace. Sizes range from 6 mm to 40 mm in diameter, depending on the switch series. Choose from multi-illumination options in lens style - ring, dot, power symbol, ring/power symbol combo, plus numerous choices in LED colors including bi-color and RGB. An additional option is to order the switches pre-wired, off-the-shelf. Both the PV series and ULV series can be ordered with wire leads attached. This option provides savings to time, labor and overall cost. Not only durable to resist damage of sharp or heavy objects, the longlife expectancy of the PV and ULV series, make these switches excellent choices for high security locations, harsh and rugged industrial-use environments. E-Switch's anti-vandal switches are suitable for vending and parking kiosks, security control boxes, commercial appliances, industrial controls, medical equipment and transport vehicles, such motorboats.

会 E•SWITCH웅

www.e-switch.com

ANTI-VANDAL SWITCH SERIES

ANTI-VANDAL SWITCH SERIES

[^0]

PUSHBUTTON SIITOHEES

Pushbutton switches, by definition, open or close an electrical circuit by pressing on the actuator or, in some cases, pulling on the actuator. Deciding on the size, style and functionality of the pushbutton is often determined by the application. E-Switch offers a wide range of pushbutton switches from miniature size with low current ratings to industrial use switches with high power and horsepower ratings. Several pushbutton switches provide an IP rating of IP54, IP65 or IP67 depending the switch series. The shapes and styles of pushbutton switches are endless from E-Switch. Shape options include square, round, oval, rectangle and some switches offer caps. Multiple termination options are available within the pushbutton family - solder lug, PCB pin, right angle PCB pins, Vertical PCB pins, surface mount, socket and tab.

Pushbution switch serles (subuninature)

Specifications subject to change without notice

PUSHBUTTON SWITCH SERIES (PGB MOUNT)

E-SWITCH ${ }^{\circ}$

PUSHBUTTON SWITCH SERIES (PCB MOUNT)

PUSHBUTTON SWITCH SERIES (PANEL MOUNT)

PUSHBUTTON SWITCH SERIES (PANEL MOUNT)

Specifications subject to change without notice

PUSHBUTTON SWITCH SERIES (PANEL MOUNT)

\qquad

Specifications subject to change without notice

E-SWITCH ${ }^{\oplus}$

Tactile, a.k.a tact, switches are used to close an electrical circuit when pressed. When the switch is released, it opens the circuit. Tact switches come in a wide range of styles and sizes. E-Switch offers tact switches from miniature to 12.4 mm square in size and numerous styles - illuminated, non-illuminated, some offer caps, round, square, rectangle and oval. Tact switches typically offer two mounting options - surface mount or thru-hole mount and some right-angle options. Several tact switches have very low profiles, from $0.35 \mathrm{~mm}-0.65 \mathrm{~mm}$ and up. Reliability, long operation life and compact size make tact switches ideal for the growing market of wearable technology and handheld devices. Several other common markets include audio/visual equipment, telecommunications, computer electronics and peripheral equipment, instrumentation controls and medical devices.

TACTILE SWITCH SERIES (PART 1)

Life Cycles: up to 200,000
Operating Temp: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

———TL1100

Multiple Actuator Styles Life Cycles: 1,000,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: $50 \mathrm{~m} \Omega$ Max. Insulation Resistance: $1,000 \mathrm{M} \Omega \mathrm{Min}$.

TL1015
Life Cycles: 200,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

Multiple Actuator Styles
Life Cycles: 100,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

\longrightarrow TL1105
Caps Available
Life Cycles: 100,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: $100 \mathrm{~m} \Omega \mathrm{Max}$.
Insulation Resistance: $100 \mathrm{M} \Omega$ Min.
Multiple Actuator Styles
Life Cycles: 30,000 (260 gf), 50,000
(130gf \& 180gf)
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: $100 \mathrm{~m} \Omega \mathrm{Max}$. Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

Caps Available
Life Cycles: 500,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: $100 \mathrm{~m} \Omega \mathrm{Max}$.
Insulation Resistance: $100 \mathrm{M} \Omega \mathrm{Min}$.

Caps Available / LED Illumination Life Cycles: 100,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega \mathrm{Min}$

TL1250

Caps Available / LED Illumination Life Cycles: 50,000
 Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max.

 Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

tactile switch series (part 2)

Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega \mathrm{Min}$.

_TL1275

TL1265

TL3301
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega \mathrm{Min}$.
LED Illlumination
Life Cycles: 100,000
Operating Temp: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

Double Stacked Low Profile Life Cycles: 30,000

TL2243

Copating Temp: -20 $1070^{\circ} \mathrm{C}$ Insulation Resistance: $100 \mathrm{M} \Omega \mathrm{Min}$.
Single or Dual LED Illumination
Life Cycles: 30,000
Operating Temp: $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Contact Resistance: $500 \mathrm{~m} \Omega$ Max.
Insulation Resistance: 100 MQ Min. Contact Resistance: $500 \mathrm{~m} \Omega \mathrm{Max}$. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.
LED Illumination
Life Cycles: 100,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: $500 \mathrm{~m} \Omega \mathrm{Max}$.
Insulation Resistance: $100 \mathrm{M} \Omega \mathrm{Min}$.
LED Illumination
Life Cycles: $1,000,000$
Operating Temp: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Contact Resistance: $100 \mathrm{~m} \Omega \mathrm{Max}$.
Insulation Resistance: $100 \mathrm{M} \Omega \mathrm{Min}$.

Caps Available / LED Illumination Life Cycles: up to 200,000
Operating Temp: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

LED Illlumination
Life Cycles: up to 500,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

LED IIllumination

Multiple Actuator Styles
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: 100 mQ Max Insulation Resistance: 100M Ω Min.@ 500VDC

LED Illlumination
Multiple Actuator Styles
Life Cycles: up to 200,000
Operating Temp: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Contact Resistance: 100m Ω Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

Caps Available / Multiple Actuator Styles Life Cycles: 100,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

Multiple Actuator Styles Life Cycles: 20,000-50,000 Operating Temp: $-20^{\circ} \mathrm{C}$ to 70°

Life Cycles: 500,000(160gf) $50,000(235 \mathrm{gf})$
Operating Temp: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega \mathrm{Min}$.
Life Cycles: 100,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: $50 \mathrm{~m} \Omega \mathrm{Max}$.
Insulation Resistance: $100 \mathrm{M} \Omega \mathrm{Min}$

Life Cycles: 1,000,000 (100gf), 500,000 (160gf), 200,000 (250gf)
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: $200 \mathrm{~m} \Omega$ Max. Insulation Resistance: $50 \mathrm{M} \Omega \mathrm{Min}$.

TL3340

TL3342
\qquad
Life Cycles: 100,000
Operating Temp: $-35^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Contact Resistance: $500 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

Life Cycles: 100,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: $20 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

Life Cycles: 200,000
Operating Temp: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

Life Cycles: 100,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min

TACTILE SWITCH SERIES (PART 4)

Fictor

Life Cycles: 100,000

TL3701

Operating Temp: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Contact Resistance: $500 \mathrm{~m} \Omega$ Max Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

Life Cycles: up to 500,000

Life Cycles: 50,000
Operating Temp: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Contact Resistance: $500 \mathrm{~m} \Omega$ Max. Insulation Resistance: 100M Ω Min

Life Cycles: 1,000,000
Operating Temp: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

TL4100
T4100

TL4110

TL52
Life Cycles: 100,000
Operating Temp: $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Contact Resistance: $100 \mathrm{~m} \Omega$ Max Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

Multiple Actuator Styles
Life Cycles: 100,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

> Multiple Actuator Styles
> Life Cycles: 100,000

TL59

TL6100
Multiple Actuator Styles
Life Cycles: up to 1,000,000
Operating Temp: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Contact Resistance: $100 \mathrm{~m} \Omega$ Max Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

_ TL6275

TL6330

TL6700

Multiple Actuator Styles
Life Cycles: up to $1,000,000$
Operating Temp: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

Multiple Actuator Styles
Life Cycles: up to 1,000 , Life Cycles: up to $1,000,000$ Operating Temp: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

> Multiple Actuator Styles
> Life Cycles: up to $1,000,000$
> Operating Temp: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
> Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

Life Cycles: 100,000
Operating Temp (Switch): $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ Operating Temp (Cap): $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega$ Min.

$$
\begin{aligned}
& \text { Life Cycles: } 10,000,000 \\
& \text { Operating Temp: }-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\
& \text { Contact Resistance: } 30 \mathrm{~m} \Omega \mathrm{Max} \text {. } \\
& \text { Insulation Resistance: } 10 \mathrm{M} \Omega \text { Min. }
\end{aligned}
$$

LED Illuminated
Life Cycles: 100,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: $500 \mathrm{~m} \Omega$ Max Insulation Resistance: $100 \mathrm{M} \Omega \mathrm{Min}$

Caps Available / LED Illuminated Life Cycles: 500,000
Operating Temp: $-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega \mathrm{Min}$.

LED Illuminated
Life Cycles: 100,000
Operating Temp: $-25^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Contact Resistance: $100 \mathrm{~m} \Omega$ Max. Insulation Resistance: $100 \mathrm{M} \Omega \mathrm{Min}$

Life Cycles: 200,000

Snap Action switches, also called microswitches, are switch devices that can open and/or close an electrical circuit at a rapid speed. Triggered by an external force, either human or physical object, which is applied to the actuator requires very little pressure to operate. Snap action switches offer multiple actuator options, such as pin plunger, lever, roller or simulated roller lever. Reliability and long operating life make snap action switches ideal for counter top appliances, timer controls, vending machines, gaming devices, power tools and industrial controls.

SNAP ACTION SWITCH SERIES

Specifications subject to change without notice

ROCKER SWITCHES

Rocker switches are commonly used as an on/off switch that rocks (rather than trips) when pressed, meaning the rocker opens or closes the circuit. This means that one side of the rocker switch is raised while the other side is depressed much like a seesaw or a rocking horse. E-Switch offers a range of rocker switches, from miniature size with low current ratings to industrial use switches with high power ratings and with horsepower ratings. Several rocker switches provide an IP rating of IP67, IP55 or IP54 depending the switch series. Panel mount installation is most common; however, a few E-Switch rocker series provide PC mount options. Additional options include non-illuminated or illuminated, plus actuator shapes such as rectangle, round, oval and paddle style actuators.

ROCKER SWITCH SERIES (SUBWIINATURE)

ROCKER SWITCH SERIES (RECTANGULAR PANEL MOUNT)

E-SWITCH ${ }^{\circ}$ \qquad

ROCKER SWITCH SERIES (RECTANGULAR PANEL MOUNT)

[^1]
ROOKER SWITCH SERIES (OVAL / ROUND PANEL MOUNT)

曷曷

Specifications subject to change without notice

E-SWITCH ${ }^{\circ}$ \qquad

ROCKER SWITCH SERIES (OUAL / ROUND PANEL MOUNT)

Specifications subject to change without notice

The toggle switch is characterized by the presence of a manually operated handle or lever which controls the flow of electrical current from power supply to device such as household appliance. E-Switch offers toggle switches with multiple options such as actuators, bushings, terminals, as well as low to high current ratings, plus some with horsepower ratings for industrial applications. Smaller size toggles are often used in equipment and devices for telecommunications, networking, instrumentation and medical devices. High power toggles are used in industrial control panels, motor-sports vehicles, commercial appliances, restaurant equipment and recreational vehicles.

TOGGLE SWITCH SERIES

A slide switch utilizes a mechanical lever turning electrical current on and off. Depending on the number of positions available, the lever can move (slide) between an open or closed state. Compact in size, E-Switch offers slideswitches with multiple termination options. Slide switches are commonly used in computer server/peripheral equipment, instrumentation devices, test \& measurement equipment and consumer electronics and household appliances.

E-SWITCH ${ }^{\circ}$

SLIDE SWITCH SERIES

Specifications subject to change without notice

E-SWITCH ${ }^{\circ}$ \qquad

DIP switch refers to a set of electrical switches packaged in a small box or housing, which are arranged in a line or circle (rotary DIP). The function is to provide a range of electrical inputs to an electronic device based on the position of the individual switches within the line or circle. The main advantage of a DIP switch is the ability to quickly change positions. Common applications for DIP switches include computer server/ peripheral equipment, instrumentation devices, test \& measurement equipment, audio/visual equipment, consumer electronics and medical equipment.

DIP SWITCH SERIES

Specifications subject to change without notice
\qquad

Visit www.e-switch.com to download 3D models, ROHS certifications, PDF specifications and drawings.

Plus, see our newest product releases and follow E-Switch on social media by clicking on the icons.

RECOMMENDED SOLDERING GUIDELINES \& IP RATINGS

Most contamination problems can be prevented by exercising care during the cleaning and soldering process. Care should be taken not to immerse or spray unsealed switches during flux removal. Contact E-Switch for specific soldering recommendations and specifications not found in this cata\log. Generalized soldering procedures are outlined below.

HAND SOLDERING AND TEMPERATURES

Recommend soldering irons of 30 watt maximum with a tip temperature of $345^{\circ} \mathrm{C}\left(650^{\circ} \mathrm{F}\right)$ for $2-3$ seconds and solder of $0.030-$ 0.040 diameter.

SMT REFLOW (LEAD AND LEAD-FREE)

"TYPICAL" SMT REFLOW (Pb and Pb-Free)

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate $\left(\mathrm{T}_{\mathrm{Smax}} \text { to } \mathrm{T}_{\mathrm{p}}\right)$	$3^{\circ} \mathrm{C} /$ second max.	$3^{\circ} \mathrm{C} /$ second max.
$\begin{aligned} & \text { Preheat } \\ & - \text {-Temperature Min. }\left(\mathrm{T}_{\mathrm{smin}}\right) \\ & - \text {-Temperature Max. }\left(\mathrm{T}_{\mathrm{Smax}}\right) \\ & - \text { Time }\left(\mathrm{t}_{\mathrm{Smin}} \text { to } \mathrm{t}_{\mathrm{Smax}}\right) \end{aligned}$	$\begin{gathered} 100^{\circ} \mathrm{C} \\ 150^{\circ} \mathrm{C} \\ 60-120 \text { seconds } \end{gathered}$	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60-180 \text { seconds } \end{gathered}$
Time maintained above: -Temperature (T_{L}) -Time (t_{L})	$\begin{gathered} 183^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$	$\begin{gathered} 217^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$
Time within $5^{\circ} \mathrm{C}$ of actual Peak Temperature (t_{p})	10-30 seconds	20-40 seconds
Ramp-Down Rate	$6^{\circ} \mathrm{C} /$ second max.	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	6 minutes max.	8 minutes max.

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

Classification Reflow Profile

WAVE SOLDER TIME AND TEMPERATURES

When wave soldering, we recommend using a no-clean flux soldering process, rather than a process that requires washing. The fluxing process must be controlled so as not to have flux migrate inside the switch.

WAVE SOLDER

(Includes Pb-Free, max. component side preheat temp-130${ }^{\circ} \mathrm{C}$)

Good venting is required. No-clean flux vapors can enter the switch if adequate venting is not available. The vapors will condense on the internal contacts and become an insulator when they solidify.

- Preheat temperature/time: Circumferential temperature of the P.C. Board not to exceed $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ for 60 seconds.
- Soldering temperature/time: not to exceed $260^{\circ} \mathrm{C}\left(500^{\circ} \mathrm{F}\right)$ for 5 seconds.

1P Rating Chart			
First Number	Definition	Second Number	Definition
Protection against solid objects		Protection against liquids	
0	No protection	0	No protection
1	Protected against solid objects over 50 mm (e.g. accidental touch by hands)	1	Protected against vertically falling drops of water
2	Protected against solid objects over 12 mm (e.g. fingers)	2	Protected against direct sprays up to 15° from the vertical
3	Protected against solid objects over 2.5 mm (e.g. tools and wires)	3	Protected against direct sprays up to 60° from vertical
4	Protected against solid objects over 1 mm (e.g. tools, wires and small wires)	4	Protected against sprays from all directions - limited ingress permitted
5	Protected against dust - limited ingress (no harmful deposit)	5	Protected against low pressure jets if water from all directions - limited ingress permitted
6	Totally protected against dust	6	Protected against strong jets of water (e.g. for use on shipdecks - limited ingress permitted)
		7	Protected against the effects of temporary immersion between 15 cm and 1 m . Duration of test 30 min .
		8	Protected against long periods of immersion under pressure

ABOUT US

E-Switch, headquartered in Minneapolis, Minnesota, has been delivering quality electromechanical switches to the telecom, high tech, medical, electronics, instrumentation, industrial, audio/visual, appliance and consumer markets since 1979. With international offices in Singapore and Hong Kong, E-Switch's global reach includes North America,

E-SWITCH, INC.
ADDRESS: 7153 NORTHLAND DRIVE N MINNEAPOLIS, MN 55428-1514 USA

PHONE: 768-504-9525 TOLL FREE (USA): 800-867-2717 FAX: 763-531-8235

E-SWITCH ASIA

ADDRESS: 8 BURN ROAD
to9-14, TRIVEX
SIIGGAPORE 369977
PHONE: 6569090863

WWW.E-SWITCH.COM

You
 Tuhe

E-Switch, Inc

@EswitchSwitches

E-Switch, Inc

[^0]: Specifications subject to change without notice

[^1]: *Option only available with non-illuminated version.

